Effective theory of quadratic degeneracies
We present an effective theory for the Bloch functions of a two-dimensional square lattice near a quadratic degeneracy point. The degeneracy is protected by the symmetries of the crystal, and breaking these symmetries can either open a band gap or split the degeneracy into a pair of linear degenerac...
محفوظ في:
المؤلفون الرئيسيون: | , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2013
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/101039 http://hdl.handle.net/10220/18344 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | We present an effective theory for the Bloch functions of a two-dimensional square lattice near a quadratic degeneracy point. The degeneracy is protected by the symmetries of the crystal, and breaking these symmetries can either open a band gap or split the degeneracy into a pair of linear degeneracies that are continuable to Dirac points. A degeneracy of this type occurs between the second and third transverse magnetic bands of a photonic crystal formed by a square lattice of dielectric rods. We show that the theory agrees with numerically computed photonic band structures and yields the correct Chern numbers induced by parity breaking. |
---|