Adaptive network fuzzy inference system and support vector machine learning for tool wear estimation in high speed milling processes
In metal cutting processes, tool condition monitoring (TCM) plays an important role in maintaining the quality of surface finishing. Monitoring of tool wear in order to prevent surface damage is one of the difficult tasks in the context of TCM. Through early detection, high quality surface finishing...
محفوظ في:
المؤلفون الرئيسيون: | Ge, H., Huang, S., Torabi, Amin J., Li, X., Er, Meng Joo, Gan, Oon Peen, Zhai, Lian yin, San, Linn |
---|---|
مؤلفون آخرون: | School of Electrical and Electronic Engineering |
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2013
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/101096 http://hdl.handle.net/10220/16312 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Application of classical clustering methods for online tool condition monitoring in high speed milling processes
بواسطة: Li, Xiang, وآخرون
منشور في: (2013) -
A survey on artificial intelligence-based modeling techniques for high speed milling processes
بواسطة: TORABI, Amin Jahromi, وآخرون
منشور في: (2015) -
Online probabilistic learning for fuzzy inference system
بواسطة: OENTARYO, Richard Jayadi, وآخرون
منشور في: (2014) -
Tool wear characteristics of binderless CBN tools used in high-speed milling of titanium alloys
بواسطة: Wang, Z.G., وآخرون
منشور في: (2014) -
Investigation of indices based on milling force for tool wear in milling
بواسطة: Yan, W., وآخرون
منشور في: (2014)