General bounds on the Wilson-Dirac operator

Lower bounds on the magnitude of the spectrum of the Hermitian Wilson-Dirac operator H(m) have previously been derived for 0<m<2 when the lattice gauge field satisfies a certain smoothness condition. In this paper lower bounds are derived for 2p-2<m<2p for general p=1,2,…,d where d i...

Full description

Saved in:
Bibliographic Details
Main Author: Adams, David H.
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/101176
http://hdl.handle.net/10220/18274
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Lower bounds on the magnitude of the spectrum of the Hermitian Wilson-Dirac operator H(m) have previously been derived for 0<m<2 when the lattice gauge field satisfies a certain smoothness condition. In this paper lower bounds are derived for 2p-2<m<2p for general p=1,2,…,d where d is the spacetime dimension. The bounds can alternatively be viewed as localization bounds on the real spectrum of the usual Wilson-Dirac operator. They are needed for the rigorous evaluation of the classical continuum limit of the axial anomaly and the index of the overlap Dirac operator at general values of m, and provide information on the topological phase structure of overlap fermions. They are also useful for understanding the instanton size dependence of the real spectrum of the Wilson-Dirac operator in an instanton background.