Upper bounds on matching families in BBZ{pq}^{n}

Matching families are one of the major ingredients in the construction of locally decodable codes (LDCs) and the best known constructions of LDCs with a constant number of queries are based on matching families. The determination of the largest size of any matching family in Zmn, where Zm is the rin...

全面介紹

Saved in:
書目詳細資料
Main Authors: Chee, Yeow Meng, Ling, San, Wang, Huaxiong, Zhang, Liang Feng
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2013
主題:
在線閱讀:https://hdl.handle.net/10356/101267
http://hdl.handle.net/10220/16778
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Matching families are one of the major ingredients in the construction of locally decodable codes (LDCs) and the best known constructions of LDCs with a constant number of queries are based on matching families. The determination of the largest size of any matching family in Zmn, where Zm is the ring of integers modulo m, is an interesting problem. In this paper, we show an upper bound of O ((pq)0.625n+0.125) for the size of any matching family in Zpqn, where p and q are two distinct primes. Our bound is valid when n is a constant, p → ∞, and p/q → 1. Our result improves an upper bound of Dvir and coworkers.