Effect of growth temperature on the terahertz-frequency conductivity of the epitaxial transparent conducting spinel NiCo2O4 films
We have measured the terahertz-frequency optical conductivity of the epitaxial inverse spinel NiCo2O4 films grown at different temperatures. The low-temperature-grown film exhibits a metallic behavior with ferrimagnetic ordering, while the high-temperature-grown film shows greatly suppressed magneti...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/101404 http://hdl.handle.net/10220/18384 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We have measured the terahertz-frequency optical conductivity of the epitaxial inverse spinel NiCo2O4 films grown at different temperatures. The low-temperature-grown film exhibits a metallic behavior with ferrimagnetic ordering, while the high-temperature-grown film shows greatly suppressed magnetization and insulating behavior. Both films exhibit band-like coherent conduction at intermediate temperatures, albeit with very different carrier densities consistent with the proposed models of cation valencies in this mixed-valence material. Both films also display a crossover to incoherent transport at low temperatures, indicating a disorder-induced tendency toward localization. |
---|