A fully digital green LDO regulator dedicated for biomedical implant using a power-aware binary switching technique

In this paper, a fully digital green LDO regulator with ultra-low power consumption of 1.8μW coupled with an excellent current efficiency of 99.99% is proposed. The novelty is the use of a power-aware binary switching technique to control the ON/OFF operation of the respective Power Transistor (PTn)...

Full description

Saved in:
Bibliographic Details
Main Authors: Kok, Chiang-Liang, Huang, Qi, Zhu, Di, Siek, Liter, Lim, Wei Meng
Other Authors: School of Electrical and Electronic Engineering
Format: Conference or Workshop Item
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/101469
http://hdl.handle.net/10220/16336
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:In this paper, a fully digital green LDO regulator with ultra-low power consumption of 1.8μW coupled with an excellent current efficiency of 99.99% is proposed. The novelty is the use of a power-aware binary switching technique to control the ON/OFF operation of the respective Power Transistor (PTn) to drive different load current. Therefore, it consumes only a very small quiescent current of 2μA. Furthermore, it remains stable when driving a large load current of 50mA. This LDO regulator, simulated with Global Foundries 0.18μm CMOS process, yields a stable output voltage of 0.80V with a supply voltage of 0.9-1.2V. Its distinct feature, ultra-low power consumption, will no doubt be ideally suitable and dedicated for biomedical implant.