Viscous liquid films on a porous vertical cylinder : dynamics and stability
In this paper, liquid films flowing down a porous vertical cylinder were investigated by an integral boundary layer model. Linear stability and nonlinear evolution were studied. Linear stability results of the integral boundary layer model were in good agreement with the linearized Navier-Stokes equ...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/101534 http://hdl.handle.net/10220/18602 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | In this paper, liquid films flowing down a porous vertical cylinder were investigated by an integral boundary layer model. Linear stability and nonlinear evolution were studied. Linear stability results of the integral boundary layer model were in good agreement with the linearized Navier-Stokes equations which indicated that the permeability of the porous medium enhanced the instability of the flow system. The growth rate and cut-off wave number increased with increasing the permeability and the Reynolds number. Linear stability analysis showed that the system was more unstable for a larger Reynolds number Re. Nonlinear studies showed that, for a very small Re, the film evolved with time while a saturated state was not observed. In addition, it was observed that the film ruptured when the permeability parameter β > 0, and the rupture time decreased with increasing β. However, for a moderate Reynolds number, a small finite harmonic disturbance evolved to a saturated traveling wave. Further investigation was conducted on the droplet-like wave solution. Results showed that the wave speed increased as the permeability parameter increased. |
---|