Semiconductor nanowires and nanotubes: from fundamentals to diverse applications
Research in the field of semiconductor nanowires (SNWs) and nanotubes has been progressing into a mature subject with several highly interdisciplinary subareas such as nanoelectronics, nanophotonics, nanocomposites, biosensing, optoelectronics, and solar cells. SNWs represent a unique system with no...
محفوظ في:
المؤلفون الرئيسيون: | , , , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2013
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/101538 http://hdl.handle.net/10220/16824 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | Research in the field of semiconductor nanowires (SNWs) and nanotubes has been progressing into a mature subject with several highly interdisciplinary subareas such as nanoelectronics, nanophotonics, nanocomposites, biosensing, optoelectronics, and solar cells. SNWs represent a unique system with novel properties associated to their one-dimensional (1D) structures. The fundamental physics concerning the formation of discrete 1D subbands, coulomb blockade effects, ballistic transport, and many-body phenomena in 1D nanowires and nanotubes provide a strong platform to explore the various scientific aspects in these nanostructures. A rich variety of preparation methods have already been developed for generating well-controlled 1D nanostructures and from a broad range of materials. The present special issue focuses on the recent development in the mechanistic understanding of the synthesis, the studies on electrical/optical properties of nanowires and their applications in nanoelectronics, nanophotonics, and solar-energy harvesting. |
---|