Analytical and numerical study of uncorrelated disorder on a honeycomb lattice
We consider a tight-binding model on the regular honeycomb lattice with uncorrelated on-site disorder. We use two independent methods (recursive Green's function and self-consistent Born approximation) to extract the scattering mean-free path, the scattering mean-free time, the density of state...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/101624 http://hdl.handle.net/10220/18746 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We consider a tight-binding model on the regular honeycomb lattice with uncorrelated on-site disorder. We use two independent methods (recursive Green's function and self-consistent Born approximation) to extract the scattering mean-free path, the scattering mean-free time, the density of states, and the localization length as a function of the disorder strength. The two methods give excellent quantitative agreement for these single-particle properties. Furthermore, a finite-size scaling analysis reveals that all localization lengths for different lattice sizes and different energies (including the energy at the Dirac points) collapse onto a single curve, in agreement with the one-parameter scaling theory of localization. The predictions of the self-consistent theory of localization however fail to quantitatively reproduce these numerically extracted localization lengths. |
---|