Strong magnetophonon resonance induced triple G-mode splitting in graphene on graphite probed by micromagneto Raman spectroscopy
The resonance between the G-band phonon excitation and Landau level optical transitions in graphene has been systematically studied by micromagneto Raman mapping. In purely decoupled graphene regions on a graphite substrate, eight traces of anticrossing spectral features with G-mode peaks are observ...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/101645 http://hdl.handle.net/10220/18736 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-101645 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1016452023-02-28T19:42:45Z Strong magnetophonon resonance induced triple G-mode splitting in graphene on graphite probed by micromagneto Raman spectroscopy Dresselhaus, Mildred S. Qiu, Caiyu Shen, Xiaonan Cao, Bingchen Cong, Chunxiao Saito, Riichiro Yu, Jingjiang Yu, Ting School of Physical and Mathematical Sciences DRNTU::Science::Physics The resonance between the G-band phonon excitation and Landau level optical transitions in graphene has been systematically studied by micromagneto Raman mapping. In purely decoupled graphene regions on a graphite substrate, eight traces of anticrossing spectral features with G-mode peaks are observed as a function of magnetic fields up to 9 T, and these traces correspond to either symmetric or asymmetric Landau level transitions. Three distinct split peaks of the G mode, named G−, Gi, and G+, are observed at the strong magnetophonon resonance condition corresponding to a magnetic field of ∼4.65 T. These three special modes are attributed to (i) the coupling between the G phonon and the magneto-optical transitions, which is responsible for G+ and G− and can be well described by the two coupled mode model and (ii) the magnetic field-dependent oscillation of the Gi band, which is currently explained by the G band of graphite modified by the interaction with G+ and G−. The pronounced interaction between Dirac fermions and phonons demonstrates a dramatically small Landau level width (∼1.3 meV), which is a signature of the ultrahigh quality graphene obtained on the surface of graphite. NRF (Natl Research Foundation, S’pore) Published version 2014-01-29T02:28:36Z 2019-12-06T20:42:07Z 2014-01-29T02:28:36Z 2019-12-06T20:42:07Z 2013 2013 Journal Article Qiu, C., Shen, X., Cao, B., Cong, C., Saito, R., Yu, J., et al. (2013). Strong magnetophonon resonance induced triple G-mode splitting in graphene on graphite probed by micromagneto Raman spectroscopy. Physical review B, 88(16), 165407-. https://hdl.handle.net/10356/101645 http://hdl.handle.net/10220/18736 10.1103/PhysRevB.88.165407 en Physical review B © 2013 American Physical Society. This paper was published in Physical Review B and is made available as an electronic reprint (preprint) with permission of American Physical Society. The paper can be found at the following official DOI: [http://dx.doi.org/10.1103/PhysRevB.88.165407]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science::Physics |
spellingShingle |
DRNTU::Science::Physics Dresselhaus, Mildred S. Qiu, Caiyu Shen, Xiaonan Cao, Bingchen Cong, Chunxiao Saito, Riichiro Yu, Jingjiang Yu, Ting Strong magnetophonon resonance induced triple G-mode splitting in graphene on graphite probed by micromagneto Raman spectroscopy |
description |
The resonance between the G-band phonon excitation and Landau level optical transitions in graphene has been systematically studied by micromagneto Raman mapping. In purely decoupled graphene regions on a graphite substrate, eight traces of anticrossing spectral features with G-mode peaks are observed as a function of magnetic fields up to 9 T, and these traces correspond to either symmetric or asymmetric Landau level transitions. Three distinct split peaks of the G mode, named G−, Gi, and G+, are observed at the strong magnetophonon resonance condition corresponding to a magnetic field of ∼4.65 T. These three special modes are attributed to (i) the coupling between the G phonon and the magneto-optical transitions, which is responsible for G+ and G− and can be well described by the two coupled mode model and (ii) the magnetic field-dependent oscillation of the Gi band, which is currently explained by the G band of graphite modified by the interaction with G+ and G−. The pronounced interaction between Dirac fermions and phonons demonstrates a dramatically small Landau level width (∼1.3 meV), which is a signature of the ultrahigh quality graphene obtained on the surface of graphite. |
author2 |
School of Physical and Mathematical Sciences |
author_facet |
School of Physical and Mathematical Sciences Dresselhaus, Mildred S. Qiu, Caiyu Shen, Xiaonan Cao, Bingchen Cong, Chunxiao Saito, Riichiro Yu, Jingjiang Yu, Ting |
format |
Article |
author |
Dresselhaus, Mildred S. Qiu, Caiyu Shen, Xiaonan Cao, Bingchen Cong, Chunxiao Saito, Riichiro Yu, Jingjiang Yu, Ting |
author_sort |
Dresselhaus, Mildred S. |
title |
Strong magnetophonon resonance induced triple G-mode splitting in graphene on graphite probed by micromagneto Raman spectroscopy |
title_short |
Strong magnetophonon resonance induced triple G-mode splitting in graphene on graphite probed by micromagneto Raman spectroscopy |
title_full |
Strong magnetophonon resonance induced triple G-mode splitting in graphene on graphite probed by micromagneto Raman spectroscopy |
title_fullStr |
Strong magnetophonon resonance induced triple G-mode splitting in graphene on graphite probed by micromagneto Raman spectroscopy |
title_full_unstemmed |
Strong magnetophonon resonance induced triple G-mode splitting in graphene on graphite probed by micromagneto Raman spectroscopy |
title_sort |
strong magnetophonon resonance induced triple g-mode splitting in graphene on graphite probed by micromagneto raman spectroscopy |
publishDate |
2014 |
url |
https://hdl.handle.net/10356/101645 http://hdl.handle.net/10220/18736 |
_version_ |
1759856663017291776 |