Boundary condition modifications of the Suzen-Huang plasma actuator model

The accuracy of the Suzen-Huang (S-H) model is improved by altering the boundary condition of the dielectric surface above the lower electrode. For the equation governing the electric field, we introduce a ‘dielectric shielding’ condition at the same region, which results in a spread of the electric...

全面介紹

Saved in:
書目詳細資料
Main Authors: Ibrahim, Imran H., Skote, Martin
其他作者: School of Mechanical and Aerospace Engineering
格式: Article
語言:English
出版: 2014
主題:
在線閱讀:https://hdl.handle.net/10356/101731
http://hdl.handle.net/10220/19358
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:The accuracy of the Suzen-Huang (S-H) model is improved by altering the boundary condition of the dielectric surface above the lower electrode. For the equation governing the electric field, we introduce a ‘dielectric shielding’ condition at the same region, which results in a spread of the electric field strength along the dielectric surface. For the equation governing the surface charge density, we introduce boundary conditions that modify the behavior of the charge density variable in the S-H model. The conditions represent a fitting procedure by adding the features of propagation and dissipation in a one-dimensional Fokker-Plank equation. The equation is initiated by a normal distribution function centered at the leading edge of the lower electrode. These modifications improved model results by about 50% when comparing the maximum induced velocity value with experimental results. Furthermore, charge density growth is propagating in a similar manner to that obtained by charge transport models.