New edge charasteristics for scene and object classification
In this paper, we show that simple edge characteristics in images, when judiciously combined, can result in improved scene and object classification. Unlike existing methods that require a large number of training samples and complex learning schemes, our method discovers simple edge properties. We...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/101881 http://hdl.handle.net/10220/16904 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | In this paper, we show that simple edge characteristics in images, when judiciously combined, can result in improved scene and object classification. Unlike existing methods that require a large number of training samples and complex learning schemes, our method discovers simple edge properties. We introduce three sets of edge properties, namely, centroid, compactness and aspect ratio of edges in the image. The combinations of these edge properties are used to discriminate among images in each class. A class representative is calculated for each class according to the average percentage of edges that satisfy the property of a particular class. This percentage for an unknown image is compared to the class representative to assign a label to it. It is shown that this simple edge properties-based method outperforms some of the state-of-the-art results on scene and object classification on standard databases. |
---|