Multi co-objective evolutionary optimization : cross surrogate augmentation for computationally expensive problems

In this paper, we present a novel cross-surrogate assisted memetic algorithm (CSAMA) as a manifestation of multi co-objective evolutionary computation to enhance the search on computationally expensive problems by means of transferring, sharing and reusing information across objectives. In particula...

全面介紹

Saved in:
書目詳細資料
Main Authors: Le, Minh Nghia, Ong, Yew Soon, Menzel, Stefan, Seah, Chun-Wei, Sendhoff, Bernhard
其他作者: School of Computer Engineering
格式: Conference or Workshop Item
語言:English
出版: 2013
主題:
在線閱讀:https://hdl.handle.net/10356/102007
http://hdl.handle.net/10220/12022
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!