Comparison of multiple random walks strategies for searching networks
We investigate diverse random-walk strategies for searching networks, especially multiple random walks (MRW). We use random walks on weighted networks to establish various models of single random walks and take the order statistics approach to study corresponding MRW, which can be a general framewor...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/102075 http://hdl.handle.net/10220/18853 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We investigate diverse random-walk strategies for searching networks, especially multiple random walks (MRW). We use random walks on weighted networks to establish various models of single random walks and take the order statistics approach to study corresponding MRW, which can be a general framework for understanding random walks on networks. Multiple preferential random walks (MPRW) and multiple simple random walks (MSRW) are two special types of MRW. As search strategies, MPRW prefers high-degree nodes while MSRW searches for low-degree nodes more efficiently. We analyze the first passage time (FPT) of wandering walkers of MRW and give the corresponding formulas of probability distributions and moments, and the mean first passage time (MFPT) is included. We show the convergence of the MFPT of the first arriving walker and find the MFPT of the last arriving walker closely related with the mean cover time. Simulations confirm analytical predictions and deepen discussions. We use a small random network to test the FPT properties from different aspects. We also explore some practical search-related issues by MRW, such as detecting unknown shortest paths and avoiding poor routings on networks. Our results are of practical significance for realizing optimal routing and performing efficient search on complex networks. |
---|