Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution
Defect-rich MoS2 ultrathin nanosheets are synthesized on a gram scale for electrocatalytic hydrogen evolution. The novel defect-rich structure introduces additional active edge sites into the MoS2 ultrathin nanosheets, which significantly improves their electrocatalytic performance. Low onset overpo...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/102233 http://hdl.handle.net/10220/18953 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Defect-rich MoS2 ultrathin nanosheets are synthesized on a gram scale for electrocatalytic hydrogen evolution. The novel defect-rich structure introduces additional active edge sites into the MoS2 ultrathin nanosheets, which significantly improves their electrocatalytic performance. Low onset overpotential and small Tafel slope, along with large cathodic current density and excellent durability, are all achieved for the novel hydrogen-evolution-reaction electrocatalyst. |
---|