The varieties for some Specht modules
J. Carlson introduced the cohomological and rank variety for a module over a finite group algebra. We give a general form for the largest component of the variety for the Specht module for the partition (pp) of p2 restricted to a maximal elementary abelian p-subgroup of rank p. We determine the vari...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/102335 http://hdl.handle.net/10220/18897 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | J. Carlson introduced the cohomological and rank variety for a module over a finite group algebra. We give a general form for the largest component of the variety for the Specht module for the partition (pp) of p2 restricted to a maximal elementary abelian p-subgroup of rank p. We determine the varieties of a large class of Specht modules corresponding to p-regular partitions. To any partition of np of not more than p parts with empty p-core we associate a unique partition Φ(μ) of np, where the rank variety of the restricted Specht module SμEn↓ to a maximal elementary abelian p-subgroup En of rank n is V#En (k) if and only if V#En (SΦ(μ)) = V#En (k). In some cases where Φ(μ) is a 2-part partition, we show that the rank variety V#En (Sμ) is V#En (k). In particular, the complexity of the Specht module Sμ is n. |
---|