Hierarchical tubular structures constructed by carbon-coated SnO2 nanoplates for highly reversible lithium storage
Hierarchical tubular structures constructed by ultrathin carbon-coated SnO2 nanoplates are rationally designed and synthesized. This interesting structure simultaneously integrates the structural and compositional design rationales for high-energy anode materials based on low-dimensional ultrathin n...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/102364 http://hdl.handle.net/10220/19006 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Hierarchical tubular structures constructed by ultrathin carbon-coated SnO2 nanoplates are rationally designed and synthesized. This interesting structure simultaneously integrates the structural and compositional design rationales for high-energy anode materials based on low-dimensional ultrathin nanoplates, a hollow tubular structure, and a carbon nanocoating. When evaluated as an anode material for lithium-ion batteries, the as-synthesized SnO2-carbon hybrid structure manifests high specific capacity and excellent. |
---|