Enhanced Li adsorption and diffusion in single-walled silicon nanotubes : an ab initio study

We report a first-principles investigation of Li adsorption and diffusion in single-walled Si nanotubes (SWSiNTs) of interest to Li-ion battery anodes. We calculate Li insertion characteristics in SWSiNTs and compare them with the respective ones in carbon nanotubes (CNTs) and other silicon nanostru...

Full description

Saved in:
Bibliographic Details
Main Authors: Kulish, Vadym V., Ng, Man-Fai, Malyi, Oleksandr I., Wu, Ping, Chen, Zhong
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2014
Subjects:
Online Access:https://hdl.handle.net/10356/102392
http://hdl.handle.net/10220/18979
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:We report a first-principles investigation of Li adsorption and diffusion in single-walled Si nanotubes (SWSiNTs) of interest to Li-ion battery anodes. We calculate Li insertion characteristics in SWSiNTs and compare them with the respective ones in carbon nanotubes (CNTs) and other silicon nanostructures. From our calculations, SWSiNTs show higher reactivity toward the adsorption of Li adatoms than CNTs and Si nanoclusters. Considering the importance of Li kinetics, we demonstrate that the interior of SWSiNTs may serve as a fast Li diffusion channel. The important advantage of SWSiNTs over their carbon analogues is a sevenfold reduction in the energy barrier for the penetration of the Li atoms into the nanotube interior through the sidewalls. This prepossesses easier Li diffusion inside the tube and subsequent utilization of the interior sites, which enhances Li storage capacity of the system. The improvements in both Li uptake and Li mobility over their analogues support the great potential of SWSiNTs as Li-ion battery anodes.