Tracing retinal vessel trees by transductive inference

Background Structural study of retinal blood vessels provides an early indication of diseases such as diabetic retinopathy, glaucoma, and hypertensive retinopathy. These studies require accurate tracing of retinal vessel tree structure from fundus images in an automated manner. However, the existin...

Full description

Saved in:
Bibliographic Details
Main Authors: De, Jaydeep, Li, Huiqi, Cheng, Li
Other Authors: School of Computer Engineering
Format: Article
Language:English
Published: 2014
Subjects:
Online Access:https://hdl.handle.net/10356/102429
http://hdl.handle.net/10220/19039
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Background Structural study of retinal blood vessels provides an early indication of diseases such as diabetic retinopathy, glaucoma, and hypertensive retinopathy. These studies require accurate tracing of retinal vessel tree structure from fundus images in an automated manner. However, the existing work encounters great difficulties when dealing with the crossover issue commonly-seen in vessel networks. Results In this paper, we consider a novel graph-based approach to address this tracing with crossover problem: After initial steps of segmentation and skeleton extraction, its graph representation can be established, where each segment in the skeleton map becomes a node, and a direct contact between two adjacent segments is translated to an undirected edge of the two corresponding nodes. The segments in the skeleton map touching the optical disk area are considered as root nodes. This determines the number of trees to-be-found in the vessel network, which is always equal to the number of root nodes. Based on this undirected graph representation, the tracing problem is further connected to the well-studied transductive inference in machine learning, where the goal becomes that of properly propagating the tree labels from those known root nodes to the rest of the graph, such that the graph is partitioned into disjoint sub-graphs, or equivalently, each of the trees is traced and separated from the rest of the vessel network. This connection enables us to address the tracing problem by exploiting established development in transductive inference. Empirical experiments on public available fundus image datasets demonstrate the applicability of our approach. Conclusions We provide a novel and systematic approach to trace retinal vessel trees with the present of crossovers by solving a transductive learning problem on induced undirected graphs.