Prediction of adverse cardiac events in emergency department patients with chest pain using machine learning for variable selection
Background The key aim of triage in chest pain patients is to identify those with high risk of adverse cardiac events as they require intensive monitoring and early intervention. In this study, we aim to discover the most relevant variables for risk prediction of major adverse cardiac events (MACE)...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/102512 http://hdl.handle.net/10220/24264 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Background The key aim of triage in chest pain patients is to identify those with high risk of adverse cardiac events as they require intensive monitoring and early intervention. In this study, we aim to discover the most relevant variables for risk prediction of major adverse cardiac events (MACE) using clinical signs and heart rate variability. Methods A total of 702 chest pain patients at the Emergency Department (ED) of a tertiary hospital in Singapore were included in this study. The recruited patients were at least 30 years of age and who presented to the ED with a primary complaint of non-traumatic chest pain. The primary outcome was a composite of MACE such as death and cardiac arrest within 72 h of arrival at the ED. For each patient, eight clinical signs such as blood pressure and temperature were measured, and a 5-min ECG was recorded to derive heart rate variability parameters. A random forest-based novel method was developed to select the most relevant variables. A geometric distance-based machine learning scoring system was then implemented to derive a risk score from 0 to 100. Results Out of 702 patients, 29 (4.1%) met the primary outcome. We selected the 3 most relevant variables for predicting MACE, which were systolic blood pressure, the mean RR interval and the mean instantaneous heart rate. The scoring system with these 3 variables produced an area under the curve (AUC) of 0.812, and a cutoff score of 43 gave a sensitivity of 82.8% and specificity of 63.4%, while the scoring system with all the 23 variables had an AUC of 0.736, and a cutoff score of 49 gave a sensitivity of 72.4% and specificity of 63.0%. Conventional thrombolysis in myocardial infarction score and the modified early warning score achieved AUC values of 0.637 and 0.622, respectively. Conclusions It is observed that a few predictors outperformed the whole set of variables in predicting MACE within 72 h. We conclude that more predictors do not necessarily guarantee better prediction results. Furthermore, machine learning-based variable selection seems promising in discovering a few relevant and significant measures as predictors. |
---|