Optimal index codes with near-extreme rates
The min-rank of a digraph was shown by Bar-Yossef et al. (2006) to represent the length of an optimal scalar linear solution of the corresponding instance of the Index Coding with Side Information (ICSI) problem. In this work, the graphs and digraphs of near-extreme min-ranks are characterized. Thos...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/102539 http://hdl.handle.net/10220/16391 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The min-rank of a digraph was shown by Bar-Yossef et al. (2006) to represent the length of an optimal scalar linear solution of the corresponding instance of the Index Coding with Side Information (ICSI) problem. In this work, the graphs and digraphs of near-extreme min-ranks are characterized. Those graphs and digraphs correspond to the ICSI instances having near-extreme transmission rates when using optimal scalar linear index codes. It is also shown that the decision problem of whether a digraph has min-rank two is NP-complete. By contrast, the same question for graphs can be answered in polynomial time. |
---|