Algebraic fast-decodable relay codes for distributed communications
In this paper, fast-decodable lattice code constructions are designed for the nonorthogonal amplify-and-forward (NAF) multiple-input multiple-output (MIMO) channel. The constructions are based on different types of algebraic structures, e.g. quaternion division algebras. When satisfying certain prop...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/102565 http://hdl.handle.net/10220/16393 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | In this paper, fast-decodable lattice code constructions are designed for the nonorthogonal amplify-and-forward (NAF) multiple-input multiple-output (MIMO) channel. The constructions are based on different types of algebraic structures, e.g. quaternion division algebras. When satisfying certain properties, these algebras provide us with codes whose structure naturally reduces the decoding complexity. The complexity can be further reduced by shortening the block length, i.e., by considering rectangular codes called less than minimum delay (LMD) codes. |
---|