Nitrogen-rich porous adsorbents for CO2 capture and storage

The construction of physical or chemical adsorbents for CO2 capture and sequestration (CCS) is a vital technology in the interim period on the way towards a sustainable low-carbon future. The search for efficient materials to satisfy the increasing demand for CCS has become extremely important. Poro...

Full description

Saved in:
Bibliographic Details
Main Authors: Li, Pei-Zhou, Zhao, Yanli
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2014
Subjects:
Online Access:https://hdl.handle.net/10356/102571
http://hdl.handle.net/10220/19050
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The construction of physical or chemical adsorbents for CO2 capture and sequestration (CCS) is a vital technology in the interim period on the way towards a sustainable low-carbon future. The search for efficient materials to satisfy the increasing demand for CCS has become extremely important. Porous materials, including porous silica, porous carbons, and newly developed metal–organic frameworks and porous organic polymers, possessing regular and well-defined porous geometry and having a high surface area and pore volume, have been widely studied for separations on laboratory scale. On account of the dipole–quadrupole interactions between the polarizable CO2 molecule and the accessible nitrogen site, the investigations have indicated that the incorporation of accessible nitrogen-donor groups into the pore walls of porous materials can improve the affinity to CO2 and increase the CO2 uptake capacity and selectivity. The CO2-adsorption process based on solid nitrogen-rich porous adsorbents does generally not require heating of a large amount of water (60–70 wt %) for regeneration, while such a heating approach cannot be avoided in the regeneration of amine-based solution absorption processes. Thus, nitrogen-rich porous adsorbents show good regeneration properties without sacrificing high separation efficiency. As such, nitrogen-rich porous materials as highly promising CO2 adsorbents have been broadly fabricated and intensively investigated. This Focus Review highlights recent significant advances in nitrogen-rich porous materials for CCS.