Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application
Metal sulfides are an emerging class of high-performance electrode materials for solar cells and electrochemical energy storage devices. Here, a facile and powerful method based on anion exchange reactions is reported to achieve metal sulfide nanoarrays through a topotactical transformation from the...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/102772 http://hdl.handle.net/10220/19109 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Metal sulfides are an emerging class of high-performance electrode materials for solar cells and electrochemical energy storage devices. Here, a facile and powerful method based on anion exchange reactions is reported to achieve metal sulfide nanoarrays through a topotactical transformation from their metal oxide and hydroxide pre-forms. Demonstrations are made to CoS and NiS nanowires, nanowalls, and core-branch nanotrees on carbon cloth and nickel foam substrates. The sulfide nanoarrays exhibit superior redox reactivity for electrochemical energy storage. The self-supported CoS nanowire arrays are tested as the pseudo-capacitor cathode, which demonstrate enhanced high-rate specific capacities and better cycle life as compared to the powder counterparts. The outstanding electrochemical properties of the sulfide nanoarrays are a consequence of the preservation of the nanoarray architecture and rigid connection with the current collector after the anion exchange reactions. |
---|