Modeling and compressing 3-D facial expressions using geometry videos
In this paper, we present a novel geometry video (GV) framework to model and compress 3-D facial expressions. GV bridges the gap of 3-D motion data and 2-D video, and provides a natural way to apply the well-studied video processing techniques to motion data processing. Our framework includes a set...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/102779 http://hdl.handle.net/10220/16423 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-102779 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1027792020-05-28T07:18:13Z Modeling and compressing 3-D facial expressions using geometry videos Xia, Jiazhi Quynh, Dao Thi Phuong He, Ying Chen, Xiaoming Hoi, Steven C. H. School of Computer Engineering DRNTU::Engineering::Computer science and engineering::Computing methodologies::Image processing and computer vision In this paper, we present a novel geometry video (GV) framework to model and compress 3-D facial expressions. GV bridges the gap of 3-D motion data and 2-D video, and provides a natural way to apply the well-studied video processing techniques to motion data processing. Our framework includes a set of algorithms to construct GVs, such as hole filling, geodesic-based face segmentation, expression-invariant parameterization (EIP), and GV compression. Our EIP algorithm can guarantee the exact correspondence of the salient features (eyes, mouth, and nose) in different frames, which leads to GVs with better spatial and temporal coherence than that of the conventional parameterization methods. By taking advantage of this feature, we also propose a new H.264/AVC-based progressive directional prediction scheme, which can provide further 10%-16% bitrate reductions compared to the original H.264/AVC applied for GV compression while maintaining good video quality. Our experimental results on real-world datasets demonstrate that GV is very effective for modeling the high-resolution 3-D expression data, thus providing an attractive way in expression information processing for gaming and movie industry. 2013-10-10T07:39:29Z 2019-12-06T21:00:08Z 2013-10-10T07:39:29Z 2019-12-06T21:00:08Z 2012 2012 Journal Article Xia, J., Quynh, D. T. P., He, Y., Chen, X., & Hoi, S. C. H. (2012). Modeling and compressing 3-D facial expressions using geometry videos. IEEE transactions on circuits and systems for video technology, 22(1), 77-90. https://hdl.handle.net/10356/102779 http://hdl.handle.net/10220/16423 10.1109/TCSVT.2011.2158337 en IEEE transactions on circuits and systems for video technology |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Computer science and engineering::Computing methodologies::Image processing and computer vision |
spellingShingle |
DRNTU::Engineering::Computer science and engineering::Computing methodologies::Image processing and computer vision Xia, Jiazhi Quynh, Dao Thi Phuong He, Ying Chen, Xiaoming Hoi, Steven C. H. Modeling and compressing 3-D facial expressions using geometry videos |
description |
In this paper, we present a novel geometry video (GV) framework to model and compress 3-D facial expressions. GV bridges the gap of 3-D motion data and 2-D video, and provides a natural way to apply the well-studied video processing techniques to motion data processing. Our framework includes a set of algorithms to construct GVs, such as hole filling, geodesic-based face segmentation, expression-invariant parameterization (EIP), and GV compression. Our EIP algorithm can guarantee the exact correspondence of the salient features (eyes, mouth, and nose) in different frames, which leads to GVs with better spatial and temporal coherence than that of the conventional parameterization methods. By taking advantage of this feature, we also propose a new H.264/AVC-based progressive directional prediction scheme, which can provide further 10%-16% bitrate reductions compared to the original H.264/AVC applied for GV compression while maintaining good video quality. Our experimental results on real-world datasets demonstrate that GV is very effective for modeling the high-resolution 3-D expression data, thus providing an attractive way in expression information processing for gaming and movie industry. |
author2 |
School of Computer Engineering |
author_facet |
School of Computer Engineering Xia, Jiazhi Quynh, Dao Thi Phuong He, Ying Chen, Xiaoming Hoi, Steven C. H. |
format |
Article |
author |
Xia, Jiazhi Quynh, Dao Thi Phuong He, Ying Chen, Xiaoming Hoi, Steven C. H. |
author_sort |
Xia, Jiazhi |
title |
Modeling and compressing 3-D facial expressions using geometry videos |
title_short |
Modeling and compressing 3-D facial expressions using geometry videos |
title_full |
Modeling and compressing 3-D facial expressions using geometry videos |
title_fullStr |
Modeling and compressing 3-D facial expressions using geometry videos |
title_full_unstemmed |
Modeling and compressing 3-D facial expressions using geometry videos |
title_sort |
modeling and compressing 3-d facial expressions using geometry videos |
publishDate |
2013 |
url |
https://hdl.handle.net/10356/102779 http://hdl.handle.net/10220/16423 |
_version_ |
1681059493545246720 |