Voting base online sequential extreme learning machine for multi-class classification

In this paper, we propose a voting based online sequential extreme learning machine (VOS-ELM) for single hidden layer feedforward networks (SLFNs) to perform the online sequential multi-class classification. Utilizing the recent voting based extreme learning machine (V-ELM) and the online sequential...

Full description

Saved in:
Bibliographic Details
Main Authors: Cao, Jiuwen, Lin, Zhiping, Huang, Guang-Bin
Other Authors: School of Electrical and Electronic Engineering
Format: Conference or Workshop Item
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/102945
http://hdl.handle.net/10220/16887
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:In this paper, we propose a voting based online sequential extreme learning machine (VOS-ELM) for single hidden layer feedforward networks (SLFNs) to perform the online sequential multi-class classification. Utilizing the recent voting based extreme learning machine (V-ELM) and the online sequential extreme learning machine (OS-ELM), the newly developed VOS-ELM is able to classify online sequences by learning data one-by-one or chunk-by-chunk with fixed or varying chunk size and to reach a higher classification accuracy than the original OS-ELM. Simulations on several real world classification datasets show that VOS-ELM outperforms OS-ELM as well as several state-of-the-art online sequential algorithms.