Voting base online sequential extreme learning machine for multi-class classification

In this paper, we propose a voting based online sequential extreme learning machine (VOS-ELM) for single hidden layer feedforward networks (SLFNs) to perform the online sequential multi-class classification. Utilizing the recent voting based extreme learning machine (V-ELM) and the online sequential...

全面介紹

Saved in:
書目詳細資料
Main Authors: Cao, Jiuwen, Lin, Zhiping, Huang, Guang-Bin
其他作者: School of Electrical and Electronic Engineering
格式: Conference or Workshop Item
語言:English
出版: 2013
主題:
在線閱讀:https://hdl.handle.net/10356/102945
http://hdl.handle.net/10220/16887
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:In this paper, we propose a voting based online sequential extreme learning machine (VOS-ELM) for single hidden layer feedforward networks (SLFNs) to perform the online sequential multi-class classification. Utilizing the recent voting based extreme learning machine (V-ELM) and the online sequential extreme learning machine (OS-ELM), the newly developed VOS-ELM is able to classify online sequences by learning data one-by-one or chunk-by-chunk with fixed or varying chunk size and to reach a higher classification accuracy than the original OS-ELM. Simulations on several real world classification datasets show that VOS-ELM outperforms OS-ELM as well as several state-of-the-art online sequential algorithms.