First principles (DFT) characterization of RhI/dppp-catalyzed C-H activation by tandem 1,2-addition/1,4-Rh shift reactions of norbornene to phenylboronic acid

The C-H activation in the tandem, “merry-go-round”, [(dppp)Rh]-catalyzed (dppp=1,3-bis(diphenylphosphino)propane), four-fold addition of norborene to PhB(OH)2 has been postulated to occur by a C(alkyl)-H oxidative addition to square-pyramidal RhIII-H species, which in turn undergoes a C(aryl)-H redu...

Full description

Saved in:
Bibliographic Details
Main Authors: Kantchev , Eric Assen B., Pangestu, Surya R., Zhou, Feng, Sullivan, Michael B., Su, Hai-Bin
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2014
Subjects:
Online Access:https://hdl.handle.net/10356/103155
http://hdl.handle.net/10220/24442
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-103155
record_format dspace
spelling sg-ntu-dr.10356-1031552020-06-01T10:13:35Z First principles (DFT) characterization of RhI/dppp-catalyzed C-H activation by tandem 1,2-addition/1,4-Rh shift reactions of norbornene to phenylboronic acid Kantchev , Eric Assen B. Pangestu, Surya R. Zhou, Feng Sullivan, Michael B. Su, Hai-Bin School of Materials Science & Engineering DRNTU::Science::Chemistry The C-H activation in the tandem, “merry-go-round”, [(dppp)Rh]-catalyzed (dppp=1,3-bis(diphenylphosphino)propane), four-fold addition of norborene to PhB(OH)2 has been postulated to occur by a C(alkyl)-H oxidative addition to square-pyramidal RhIII-H species, which in turn undergoes a C(aryl)-H reductive elimination. Our DFT calculations confirm the RhI/RhIII mechanism. At the IEFPCM(toluene, 373.15 K)/PBE0/DGDZVP level of theory, the oxidative addition barrier was calculated to be 12.9 kcal mol−1, and that of reductive elimination was 5.0 kcal mol−1. The observed selectivity of the reaction correlates well with the relative energy barriers of the cycle steps. The higher barrier (20.9 kcal mol−1) for norbornyl–Rh protonation ensures that the reaction is steered towards the 1,4-shift (total barrier of 16.3 kcal mol−1), acting as an equilibration shuttle. The carborhodation (13.2 kcal mol−1) proceeds through a lower barrier than the protonation (16.7 kcal mol−1) of the rearranged aryl–Rh species in the absence of o- or m-substituents, ensuring multiple carborhodations take place. However, for 2,5-dimethylphenyl, which was used as a model substrate, the barrier for carborhodation is increased to 19.4 kcal mol−1, explaining the observed termination of the reaction at 1,2,3,4-tetra(exo-norborn-2-yl)benzene. Finally, calculations with (Z)-2-butene gave a carborhodation barrier of 20.2 kcal mol−1, suggesting that carborhodation of non-strained, open-chain substrates would be disfavored relative to protonation. 2014-12-11T08:18:41Z 2019-12-06T21:06:34Z 2014-12-11T08:18:41Z 2019-12-06T21:06:34Z 2014 2014 Journal Article Kantchev , E. A. B., Pangestu, S. R., Zhou, F., Sullivan, M. B., & Su, H.-B. (2014). First principles (DFT) characterization of RhI/dppp-catalyzed C-H activation by tandem 1,2-addition/1,4-Rh shift reactions of norbornene to phenylboronic acid. Chemistry - A European journal, 20(47), 15625-15634. 0947-6539 https://hdl.handle.net/10356/103155 http://hdl.handle.net/10220/24442 10.1002/chem.201402988 en Chemistry - A European journal © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
institution Nanyang Technological University
building NTU Library
country Singapore
collection DR-NTU
language English
topic DRNTU::Science::Chemistry
spellingShingle DRNTU::Science::Chemistry
Kantchev , Eric Assen B.
Pangestu, Surya R.
Zhou, Feng
Sullivan, Michael B.
Su, Hai-Bin
First principles (DFT) characterization of RhI/dppp-catalyzed C-H activation by tandem 1,2-addition/1,4-Rh shift reactions of norbornene to phenylboronic acid
description The C-H activation in the tandem, “merry-go-round”, [(dppp)Rh]-catalyzed (dppp=1,3-bis(diphenylphosphino)propane), four-fold addition of norborene to PhB(OH)2 has been postulated to occur by a C(alkyl)-H oxidative addition to square-pyramidal RhIII-H species, which in turn undergoes a C(aryl)-H reductive elimination. Our DFT calculations confirm the RhI/RhIII mechanism. At the IEFPCM(toluene, 373.15 K)/PBE0/DGDZVP level of theory, the oxidative addition barrier was calculated to be 12.9 kcal mol−1, and that of reductive elimination was 5.0 kcal mol−1. The observed selectivity of the reaction correlates well with the relative energy barriers of the cycle steps. The higher barrier (20.9 kcal mol−1) for norbornyl–Rh protonation ensures that the reaction is steered towards the 1,4-shift (total barrier of 16.3 kcal mol−1), acting as an equilibration shuttle. The carborhodation (13.2 kcal mol−1) proceeds through a lower barrier than the protonation (16.7 kcal mol−1) of the rearranged aryl–Rh species in the absence of o- or m-substituents, ensuring multiple carborhodations take place. However, for 2,5-dimethylphenyl, which was used as a model substrate, the barrier for carborhodation is increased to 19.4 kcal mol−1, explaining the observed termination of the reaction at 1,2,3,4-tetra(exo-norborn-2-yl)benzene. Finally, calculations with (Z)-2-butene gave a carborhodation barrier of 20.2 kcal mol−1, suggesting that carborhodation of non-strained, open-chain substrates would be disfavored relative to protonation.
author2 School of Materials Science & Engineering
author_facet School of Materials Science & Engineering
Kantchev , Eric Assen B.
Pangestu, Surya R.
Zhou, Feng
Sullivan, Michael B.
Su, Hai-Bin
format Article
author Kantchev , Eric Assen B.
Pangestu, Surya R.
Zhou, Feng
Sullivan, Michael B.
Su, Hai-Bin
author_sort Kantchev , Eric Assen B.
title First principles (DFT) characterization of RhI/dppp-catalyzed C-H activation by tandem 1,2-addition/1,4-Rh shift reactions of norbornene to phenylboronic acid
title_short First principles (DFT) characterization of RhI/dppp-catalyzed C-H activation by tandem 1,2-addition/1,4-Rh shift reactions of norbornene to phenylboronic acid
title_full First principles (DFT) characterization of RhI/dppp-catalyzed C-H activation by tandem 1,2-addition/1,4-Rh shift reactions of norbornene to phenylboronic acid
title_fullStr First principles (DFT) characterization of RhI/dppp-catalyzed C-H activation by tandem 1,2-addition/1,4-Rh shift reactions of norbornene to phenylboronic acid
title_full_unstemmed First principles (DFT) characterization of RhI/dppp-catalyzed C-H activation by tandem 1,2-addition/1,4-Rh shift reactions of norbornene to phenylboronic acid
title_sort first principles (dft) characterization of rhi/dppp-catalyzed c-h activation by tandem 1,2-addition/1,4-rh shift reactions of norbornene to phenylboronic acid
publishDate 2014
url https://hdl.handle.net/10356/103155
http://hdl.handle.net/10220/24442
_version_ 1681057797583667200