Numerical analysis with joint model on RC assemblages subjected to progressive collapse
The behaviour of structures subjected to progressive collapse is typically investigated by introducing column-removing scenarios. Previous experimental results show that large-deformation performances of reinforced concrete (RC) assemblages under a middle column removal scenario (MCRS) involve disco...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/103372 http://hdl.handle.net/10220/24474 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-103372 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1033722020-03-07T11:45:55Z Numerical analysis with joint model on RC assemblages subjected to progressive collapse Tan, Kang Hai Yu, Jun School of Civil and Environmental Engineering DRNTU::Engineering::Civil engineering::Structures and design The behaviour of structures subjected to progressive collapse is typically investigated by introducing column-removing scenarios. Previous experimental results show that large-deformation performances of reinforced concrete (RC) assemblages under a middle column removal scenario (MCRS) involve discontinuity due to bar slip and fracture near the joint interfaces. To consider the effects of the discontinuity on structural behaviour, a component-based joint model is introduced into macromodel-based finite-element analysis (macro-FEA), in which beams are modelled as fibre elements. The joint model consists of a series of non-linear springs, each of which represents a load transfer path from adjoining members to a joint. The calibration procedures of spring properties are illustrated systematically. In particular, a macro-bar stress–slip model is developed to consider the effects of large post-yield tensile strains and finite embedment lengths on the bar stress–slip relationship. Comparisons of simulated and observed responses for a series of RC assemblages indicate that macro-FEA incorporating the joint model is a practical approach to simulate the essential structural behaviour of RC assemblages under a MCRS, including catenary action. Finally, the macro numerical model is used to investigate the effects of boundary conditions, bar curtailment and beam depth on the structural behaviour of RC assemblages. The results suggest that beam depth affects the fixed-end rotation contributed by bar slip, and further significantly influences the development of catenary action. Published version 2014-12-17T01:55:14Z 2019-12-06T21:11:11Z 2014-12-17T01:55:14Z 2019-12-06T21:11:11Z 2014 2014 Journal Article Tan, K. H., & Yu, J. (2014). Numerical analysis with joint model on RC assemblages subjected to progressive collapse. Magazine of concrete research, 66(23), 1201-1218. https://hdl.handle.net/10356/103372 http://hdl.handle.net/10220/24474 10.1680/macr.14.00100 en Magazine of concrete research © 2014 Thomas Telford. This paper was published in Magazine of Concrete Research and is made available as an electronic reprint (preprint) with permission of Thomas Telford. The paper can be found at the following official DOI: [http://dx.doi.org/10.1680/macr.14.00100]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law. 18 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Civil engineering::Structures and design |
spellingShingle |
DRNTU::Engineering::Civil engineering::Structures and design Tan, Kang Hai Yu, Jun Numerical analysis with joint model on RC assemblages subjected to progressive collapse |
description |
The behaviour of structures subjected to progressive collapse is typically investigated by introducing column-removing scenarios. Previous experimental results show that large-deformation performances of reinforced concrete (RC) assemblages under a middle column removal scenario (MCRS) involve discontinuity due to bar slip and fracture near the joint interfaces. To consider the effects of the discontinuity on structural behaviour, a component-based joint model is introduced into macromodel-based finite-element analysis (macro-FEA), in which beams are modelled as fibre elements. The joint model consists of a series of non-linear springs, each of which represents a load transfer path from adjoining members to a joint. The calibration procedures of spring properties are illustrated systematically. In particular, a macro-bar stress–slip model is developed to consider the effects of large post-yield tensile strains and finite embedment lengths on the bar stress–slip relationship. Comparisons of simulated and observed responses for a series of RC assemblages indicate that macro-FEA incorporating the joint model is a practical approach to simulate the essential structural behaviour of RC assemblages under a MCRS, including catenary action. Finally, the macro numerical model is used to investigate the effects of boundary conditions, bar curtailment and beam depth on the structural behaviour of RC assemblages. The results suggest that beam depth affects the fixed-end rotation contributed by bar slip, and further significantly influences the development of catenary action. |
author2 |
School of Civil and Environmental Engineering |
author_facet |
School of Civil and Environmental Engineering Tan, Kang Hai Yu, Jun |
format |
Article |
author |
Tan, Kang Hai Yu, Jun |
author_sort |
Tan, Kang Hai |
title |
Numerical analysis with joint model on RC assemblages subjected to progressive collapse |
title_short |
Numerical analysis with joint model on RC assemblages subjected to progressive collapse |
title_full |
Numerical analysis with joint model on RC assemblages subjected to progressive collapse |
title_fullStr |
Numerical analysis with joint model on RC assemblages subjected to progressive collapse |
title_full_unstemmed |
Numerical analysis with joint model on RC assemblages subjected to progressive collapse |
title_sort |
numerical analysis with joint model on rc assemblages subjected to progressive collapse |
publishDate |
2014 |
url |
https://hdl.handle.net/10356/103372 http://hdl.handle.net/10220/24474 |
_version_ |
1681035701132460032 |