Phosphine-free, low-temperature synthesis of tetrapod-shaped CdS and its hybrid with Au nanoparticles

Tetrapod-shaped CdS colloidal nanocrystals are synthesized using a facile, phosphine-free synthesis approach at low temperature. The arm length and diameter of CdS tetrapods can be easily tuned by using different source of sulphureous precursors, i.e., sulfur powder, thioacetamide, and sodium diethy...

Full description

Saved in:
Bibliographic Details
Main Authors: Du, Yaping, Chen, Bo, Yin, Zongyou, Liu, Zhengqing, Zhang, Hua
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2014
Subjects:
Online Access:https://hdl.handle.net/10356/103480
http://hdl.handle.net/10220/24519
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Tetrapod-shaped CdS colloidal nanocrystals are synthesized using a facile, phosphine-free synthesis approach at low temperature. The arm length and diameter of CdS tetrapods can be easily tuned by using different source of sulphureous precursors, i.e., sulfur powder, thioacetamide, and sodium diethyldithiocarbamate. Moreover, the growth of Au nanoparticles onto CdS to form metal–semiconductor hybrid nanocrystals is also demonstrated. The tetrapod-shaped CdS nanocrystals exhibit strong arm-diameter-dependent absorption and photoluminescence characteristics. Importantly, the as-obtained CdS tetrapods exhibit promising photocatalytic activity for the water-splitting reaction in photoelectrochemical cells.