Polydopamine-assisted decoration of ZnO nanorods with Ag nanoparticles : an improved photoelectrochemical anode

The modification of zinc oxide (ZnO) with silver (Ag) has proven to be an effective strategy to enhance the optical and electrical properties, in which the interactions between ZnO and Ag are critically determined by the structure and morphology of the ZnO–Ag hybrids. In order to achieve homogeneous...

Full description

Saved in:
Bibliographic Details
Main Authors: Yang, Liping, Ke, Lin, Tan, Hui Ru, Liu, Hai, Huang, Yizhong, Sun, Xiao Wei, Lu, Xuehong, Wei, Yuefan, Kong, Junhua, Du, Hejun
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2014
Subjects:
Online Access:https://hdl.handle.net/10356/103542
http://hdl.handle.net/10220/24525
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-103542
record_format dspace
spelling sg-ntu-dr.10356-1035422020-06-01T10:21:18Z Polydopamine-assisted decoration of ZnO nanorods with Ag nanoparticles : an improved photoelectrochemical anode Yang, Liping Ke, Lin Tan, Hui Ru Liu, Hai Huang, Yizhong Sun, Xiao Wei Lu, Xuehong Wei, Yuefan Kong, Junhua Du, Hejun School of Electrical and Electronic Engineering School of Materials Science & Engineering School of Mechanical and Aerospace Engineering DRNTU::Science::Chemistry::Physical chemistry::Electrochemistry The modification of zinc oxide (ZnO) with silver (Ag) has proven to be an effective strategy to enhance the optical and electrical properties, in which the interactions between ZnO and Ag are critically determined by the structure and morphology of the ZnO–Ag hybrids. In order to achieve homogeneous and controllable distribution, polydopamine (PDA) was introduced via in situpolymerization to assist the decoration of ZnO nanorods (NRs) with Ag nanoparticles (NPs). Compared with pristine ZnO NRs, the light absorption is significantly enhanced for the PDA assisted Ag-decorated ZnO, which is attributed to the Ag NPs as well as the carbonized PDA thin film. Ag NPs of small size enhance the multiple/high-angle scattering from localized plasmonic effect, which increases the light path length hence traps more light. The carbonized PDA film is further beneficial to the absorption of the visible light. The Ag-decorated ZnO NRs on fluorine-doped tin oxide (FTO) coated glasses were then used as photoanodes of the photoelectrochemical (PEC) cell. The short circuit current density (JSC, 1.8 mA cm−2), maximum photo current conversion efficiency (PCE, 3.9%) and lifetime (3.07 mA cm−2 at 500 seconds) are achieved with an optimized loading of Ag nanoparticles derived from 0.01 M silver nitrate (AgNO3), which are found to be much higher than those of pristine ZnO NRs and other reported Ag–ZnO-based photoanodes. The overall PEC performance improvement is attributed to the localized plasmonic effect enhanced light harvesting as well as the facilitated charge transport and inhibition of recombination of electrons and holes from both Ag nanoparticles that act as an electron acceptor and carbonized PDA film as stabilizer and separator. Published version 2014-12-22T08:42:07Z 2019-12-06T21:14:57Z 2014-12-22T08:42:07Z 2019-12-06T21:14:57Z 2013 2013 Journal Article Wei, Y., Kong, J., Yang, L., Ke, L., Tan, H. R., Liu, H., et al. (2013). Polydopamine-assisted decoration of ZnO nanorods with Ag nanoparticles : an improved photoelectrochemical anode. Journal of materials chemistry A, 1(16), 5045-5052. https://hdl.handle.net/10356/103542 http://hdl.handle.net/10220/24525 10.1039/C3TA10499K en Journal of materials chemistry A This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. 8 p. application/pdf
institution Nanyang Technological University
building NTU Library
country Singapore
collection DR-NTU
language English
topic DRNTU::Science::Chemistry::Physical chemistry::Electrochemistry
spellingShingle DRNTU::Science::Chemistry::Physical chemistry::Electrochemistry
Yang, Liping
Ke, Lin
Tan, Hui Ru
Liu, Hai
Huang, Yizhong
Sun, Xiao Wei
Lu, Xuehong
Wei, Yuefan
Kong, Junhua
Du, Hejun
Polydopamine-assisted decoration of ZnO nanorods with Ag nanoparticles : an improved photoelectrochemical anode
description The modification of zinc oxide (ZnO) with silver (Ag) has proven to be an effective strategy to enhance the optical and electrical properties, in which the interactions between ZnO and Ag are critically determined by the structure and morphology of the ZnO–Ag hybrids. In order to achieve homogeneous and controllable distribution, polydopamine (PDA) was introduced via in situpolymerization to assist the decoration of ZnO nanorods (NRs) with Ag nanoparticles (NPs). Compared with pristine ZnO NRs, the light absorption is significantly enhanced for the PDA assisted Ag-decorated ZnO, which is attributed to the Ag NPs as well as the carbonized PDA thin film. Ag NPs of small size enhance the multiple/high-angle scattering from localized plasmonic effect, which increases the light path length hence traps more light. The carbonized PDA film is further beneficial to the absorption of the visible light. The Ag-decorated ZnO NRs on fluorine-doped tin oxide (FTO) coated glasses were then used as photoanodes of the photoelectrochemical (PEC) cell. The short circuit current density (JSC, 1.8 mA cm−2), maximum photo current conversion efficiency (PCE, 3.9%) and lifetime (3.07 mA cm−2 at 500 seconds) are achieved with an optimized loading of Ag nanoparticles derived from 0.01 M silver nitrate (AgNO3), which are found to be much higher than those of pristine ZnO NRs and other reported Ag–ZnO-based photoanodes. The overall PEC performance improvement is attributed to the localized plasmonic effect enhanced light harvesting as well as the facilitated charge transport and inhibition of recombination of electrons and holes from both Ag nanoparticles that act as an electron acceptor and carbonized PDA film as stabilizer and separator.
author2 School of Electrical and Electronic Engineering
author_facet School of Electrical and Electronic Engineering
Yang, Liping
Ke, Lin
Tan, Hui Ru
Liu, Hai
Huang, Yizhong
Sun, Xiao Wei
Lu, Xuehong
Wei, Yuefan
Kong, Junhua
Du, Hejun
format Article
author Yang, Liping
Ke, Lin
Tan, Hui Ru
Liu, Hai
Huang, Yizhong
Sun, Xiao Wei
Lu, Xuehong
Wei, Yuefan
Kong, Junhua
Du, Hejun
author_sort Yang, Liping
title Polydopamine-assisted decoration of ZnO nanorods with Ag nanoparticles : an improved photoelectrochemical anode
title_short Polydopamine-assisted decoration of ZnO nanorods with Ag nanoparticles : an improved photoelectrochemical anode
title_full Polydopamine-assisted decoration of ZnO nanorods with Ag nanoparticles : an improved photoelectrochemical anode
title_fullStr Polydopamine-assisted decoration of ZnO nanorods with Ag nanoparticles : an improved photoelectrochemical anode
title_full_unstemmed Polydopamine-assisted decoration of ZnO nanorods with Ag nanoparticles : an improved photoelectrochemical anode
title_sort polydopamine-assisted decoration of zno nanorods with ag nanoparticles : an improved photoelectrochemical anode
publishDate 2014
url https://hdl.handle.net/10356/103542
http://hdl.handle.net/10220/24525
_version_ 1681058823850164224