Mesoscopic model for the electromagnetic properties of arrays of nanotubes and nanowires : a bulk equivalent approach

We propose a new bulk approach to the electromagnetic (EM) modeling of nanotubes (NTs) and nanowires (NWs) in arrays or bundles of arbitrary shape and size. The purpose of this model is to enable feasible and efficient EM analysis of electronics designs incorporating these novel materials by using t...

全面介紹

Saved in:
書目詳細資料
Main Authors: Franck, Pierre, Baillargeat, Dominique, Tay, Beng Kang
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2013
主題:
在線閱讀:https://hdl.handle.net/10356/103590
http://hdl.handle.net/10220/16469
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:We propose a new bulk approach to the electromagnetic (EM) modeling of nanotubes (NTs) and nanowires (NWs) in arrays or bundles of arbitrary shape and size. The purpose of this model is to enable feasible and efficient EM analysis of electronics designs incorporating these novel materials by using the available software. A general and straightforward approach to derive anisotropic bulk conductivity from single-element models is exposed. The specific model for single-wall carbon nanotubes (SWCNTs) is then adapted from a broadly accepted one. Both models have been implemented in two different 3D EM solvers. Through simulation of single and bundled carbon nanotube (CNT) structures, we demonstrate the near equivalence of both models in transmission as well as in radiation. Finally we demonstrate, for the first time, the full EM simulation of a device integrating CNTs.