Optimal Energy Transfer in Light-Harvesting Systems

Photosynthesis is one of the most essential biological processes in which specialized pigment-protein complexes absorb solar photons, and with a remarkably high efficiency, guide the photo-induced excitation energy toward the reaction center to subsequently trigger its conversion to chemical energy....

Full description

Saved in:
Bibliographic Details
Main Authors: Chen, Lipeng, Shenai, Prathamesh, Zheng, Fulu, Somoza, Alejandro, Zhao, Yang
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2015
Online Access:https://hdl.handle.net/10356/103611
http://hdl.handle.net/10220/38774
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Photosynthesis is one of the most essential biological processes in which specialized pigment-protein complexes absorb solar photons, and with a remarkably high efficiency, guide the photo-induced excitation energy toward the reaction center to subsequently trigger its conversion to chemical energy. In this work, we review the principles of optimal energy transfer in various natural and artificial light harvesting systems. We begin by presenting the guiding principles for optimizing the energy transfer efficiency in systems connected to dissipative environments, with particular attention paid to the potential role of quantum coherence in light harvesting systems. We will comment briefly on photo-protective mechanisms in natural systems that ensure optimal functionality under varying ambient conditions. For completeness, we will also present an overview of the charge separation and electron transfer pathways in reaction centers. Finally, recent theoretical and experimental progress on excitation energy transfer, charge separation, and charge transport in artificial light harvesting systems is delineated, with organic solar cells taken as prime examples.