Applications of quasi-uniform codes to storage

We consider the design of quasi-uniform codes from dihedral 2-groups. Quasi-uniform codes have the distinctive feature of allowing codeword coefficients to live in different alphabets. We obtain a bound on the minimum distance of quasiuniform codes coming from p-groups as a function of the number of...

Full description

Saved in:
Bibliographic Details
Main Authors: Thomas, Eldho K., Oggier, Frédérique
Other Authors: School of Physical and Mathematical Sciences
Format: Conference or Workshop Item
Language:English
Published: 2015
Subjects:
Online Access:https://hdl.handle.net/10356/103619
http://hdl.handle.net/10220/24617
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:We consider the design of quasi-uniform codes from dihedral 2-groups. Quasi-uniform codes have the distinctive feature of allowing codeword coefficients to live in different alphabets. We obtain a bound on the minimum distance of quasiuniform codes coming from p-groups as a function of the number of p-ary codeword components. We study possible applications of such codes to storage, where the minimum distance is important to allow object retrieval, yet binary coefficients are preferred for fast computations, for example during repairs.