Applications of quasi-uniform codes to storage

We consider the design of quasi-uniform codes from dihedral 2-groups. Quasi-uniform codes have the distinctive feature of allowing codeword coefficients to live in different alphabets. We obtain a bound on the minimum distance of quasiuniform codes coming from p-groups as a function of the number of...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Thomas, Eldho K., Oggier, Frédérique
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: Conference or Workshop Item
اللغة:English
منشور في: 2015
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/103619
http://hdl.handle.net/10220/24617
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:We consider the design of quasi-uniform codes from dihedral 2-groups. Quasi-uniform codes have the distinctive feature of allowing codeword coefficients to live in different alphabets. We obtain a bound on the minimum distance of quasiuniform codes coming from p-groups as a function of the number of p-ary codeword components. We study possible applications of such codes to storage, where the minimum distance is important to allow object retrieval, yet binary coefficients are preferred for fast computations, for example during repairs.