In-flight temperature and velocity of powder particles of plasma-sprayed TiO2
This paper relates to the in-flight temperature and velocity of TiO2 particles, an integral part of the systematic research on atmospheric plasma spraying of the material. Initial powder feedstock (32-45 μm, 100% rutile phase) was introduced into the plasma jet. Six parameters were selected to repre...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/103646 http://hdl.handle.net/10220/16534 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | This paper relates to the in-flight temperature and velocity of TiO2 particles, an integral part of the systematic research on atmospheric plasma spraying of the material. Initial powder feedstock (32-45 μm, 100% rutile phase) was introduced into the plasma jet. Six parameters were selected to represent the versatility of the plasma system and their respective influences were determined according to basic one-at-a-time and advanced Taguchi design of experiments combined with the analysis of variance analytical tool. It was found that the measured temperatures varied from 2121 to 2830 K (33% variation), while the velocities of the particles were altered from 127 to 243 m/s (91% variation). Gun net power was detected as the most influential factor with respect to the velocity of the TiO2 particles (an increase of 8.4 m/s per 1-kW increase in net power). Spray distance was determined to have a major impact on the in-flight temperature (a decrease of 10 mm in spray distance corresponds to a drop of 36 K). A significant decrease in both characteristics was detected for an increasing amount of powder entering the plasma jet: A drop of 7.1 K and 1.4 m/s was recorded per every +1 g/min of TiO2 powder. |
---|