Levels of serum brain-derived neurotropic factor in individuals at ultra-high risk for psychosis—findings from the longitudinal youth at risk study (LYRIKS)

Background:Identifying biomarkers to enrich prognostication and risk predictions in individuals at high risk of developing psychosis will enable stratified early intervention efforts. Brain-derived neurotrophic factor has been widely studied in schizophrenia and in first-episode psychosis with promi...

Full description

Saved in:
Bibliographic Details
Main Authors: Lee, Jimmy, Yee, Jie Yin, Lee, Tih-Shih
Other Authors: Lee Kong Chian School of Medicine (LKCMedicine)
Format: Article
Language:English
Published: 2019
Subjects:
Online Access:https://hdl.handle.net/10356/103711
http://hdl.handle.net/10220/47370
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Background:Identifying biomarkers to enrich prognostication and risk predictions in individuals at high risk of developing psychosis will enable stratified early intervention efforts. Brain-derived neurotrophic factor has been widely studied in schizophrenia and in first-episode psychosis with promising results. The aim of this study was to examine the levels of serum brain-derived neurotrophic factor between healthy controls and individuals with ultra-high risk of psychosis.Methods:A sample of 106 healthy controls and 105 ultra-high risk of psychosis individuals from the Longitudinal Youth at Risk Study was included in this study. Ultra-high risk of psychosis status was determined using the Comprehensive Assessment of At-Risk Mental State at recruitment. Calgary Depression Scale for Schizophrenia was used to assess the severity of depression. All participants were followed up for 2 years, and ultra-high risk of psychosis remitters were defined by ultra-high risk of psychosis individuals who no longer fulfilled Comprehensive Assessment of At-Risk Mental State criteria at the end of the study period. Levels of brain-derived neurotrophic factor were measured in the serum by enzyme-linked immunosorbent assay method.Results:The ultra-high risk of psychosis group had significantly higher baseline levels of serum brain-derived neurotrophic factor compared with the control group (3.7 vs 3.3 ng/mL, P=.018). However, baseline levels of serum brain-derived neurotrophic factor did not predict the development of psychosis (OR=0.64, CI=0.40–1.02) or remission (OR=0.83, CI=0.60–1.15) from ultra-high risk of psychosis status.Conclusion:Findings from our study did not support a role for serum brain-derived neurotrophic factor in predicting outcomes in ultra-high risk of psychosis individuals. However, the finding of higher levels of serum brain-derived neurotrophic factor in ultra-high risk of psychosis individuals deserves further study.