Rational construction of LaFeO3 perovskite nanoparticle-modified TiO2 nanotube arrays for visible-light driven photocatalytic activity

LaFeO3 nanoparticle-modified TiO2 nanotube arrays were fabricated through facile hydrothermal growth. The absorption edge of LaFeO3 nanoparticle-modified TiO2 nanotube arrays displaying a red shift to ~540 nm was indicated by the results of diffuse reflectance spectroscopy (DRS) when compared to TiO...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu, Jiangdong, Xiang, Siwan, Ge, Mingzheng, Zhang, Zeyang, Huang, Jianying, Tang, Yuxin, Sun, Lan, Lin, Changjian, Lai, Yuekun
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2019
Subjects:
Online Access:https://hdl.handle.net/10356/103726
http://hdl.handle.net/10220/47364
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:LaFeO3 nanoparticle-modified TiO2 nanotube arrays were fabricated through facile hydrothermal growth. The absorption edge of LaFeO3 nanoparticle-modified TiO2 nanotube arrays displaying a red shift to ~540 nm was indicated by the results of diffuse reflectance spectroscopy (DRS) when compared to TiO2 nanotube arrays, which means that the sample of LaFeO3 nanoparticle-modified TiO2 nanotube arrays had enhanced visible light response. Photoluminescence (PL) spectra showed that the LaFeO3 nanoparticle-modified TiO2 nanotube arrays efficiently separated the photoinduced electron–hole pairs and effectively prolonged the endurance of photogenerated carriers. The results of methylene blue (MB) degeneration under simulated visible light illumination showed that the photocatalytic activity of LaFeO3 nanoparticle-modified TiO2 nanotube arrays is obviously increased. LaFeO3 nanoparticle-modified TiO2 nanotube arrays with 12 h hydrothermal reaction time showed the highest degradation rate with a 2-fold enhancement compared with that of pristine TiO2 nanotube arrays.