Mimicking cellular transport mechanism in stem cells through endosomal escape of new peptide-coated quantum dots

Protein transport is an important phenomenon in biological systems. Proteins are transported via several mechanisms to reach their destined compartment of cell for its complete function. One such mechanism is the microtubule mediated protein transport. Up to now, there are no reports on synthetic...

Full description

Saved in:
Bibliographic Details
Main Authors: Narayanan, Karthikeyan, Yen, Swee Kuan, Dou, Qingqing, Padmanabhan, Parasuraman, Sudhaharan, Thankiah, Ahmed, Sohail, Ying, Jackie Y., Selvan, Subramanian Tamil
Other Authors: Lee Kong Chian School of Medicine (LKCMedicine)
Format: Article
Language:English
Published: 2014
Subjects:
Online Access:https://hdl.handle.net/10356/103727
http://hdl.handle.net/10220/19284
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Protein transport is an important phenomenon in biological systems. Proteins are transported via several mechanisms to reach their destined compartment of cell for its complete function. One such mechanism is the microtubule mediated protein transport. Up to now, there are no reports on synthetic systems mimicking the biological protein transport mechanism. Here we report a highly efficient method of mimicking the microtubule mediated protein transport using newly designed biotinylated peptides encompassing a microtubule-associated sequence (MTAS) and a nuclear localization signaling (NLS) sequence, and their final conjugation with streptavidin-coated CdSe/ZnS quantum dots (QDs). Our results demonstrate that these novel bio-conjugated QDs enhance the endosomal escape and promote targeted delivery into the nucleus of human mesenchymal stem cells via microtubules. Mimicking the cellular transport mechanism in stem cells is highly desirable for diagnostics, targeting and therapeutic applications, opening up new avenues in the area of drug delivery.