Enhanced electrochromism with rapid growth layer-by-layer assembly of polyelectrolyte complexes

In this work, a facile method to deposit fast growing electrochromic multilayer films with enhanced electrochemical properties using layer-by-layer (LbL) self-assembly of complex polyelectrolyte is demonstrated. Two linear polymers, poly(acrylic acid) (PAA) and polyethylenimine (PEI), are used to fo...

Full description

Saved in:
Bibliographic Details
Main Authors: Darmawan, Peter, Lee, Pooi See, Cui, Mengqi, Ng, Wee Siang, Wang, Xu
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2015
Subjects:
Online Access:https://hdl.handle.net/10356/103966
http://hdl.handle.net/10220/24621
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:In this work, a facile method to deposit fast growing electrochromic multilayer films with enhanced electrochemical properties using layer-by-layer (LbL) self-assembly of complex polyelectrolyte is demonstrated. Two linear polymers, poly(acrylic acid) (PAA) and polyethylenimine (PEI), are used to formulate stable complexes under specific pH to prepare polyaniline (PANI)/PAA-PEI multilayer films via LbL deposition. By introducing polymeric complexes as building blocks, [PANI/PAA-PEI]n films grow much faster compared with [PANI/PAA]n films, which are deposited under the same condition. Unlike the compact [PANI/PAA]n films, [PANI/PAA-PEI]n films exhibit porous structure that is beneficial to the electrochemical process and leads to improved electrochromic properties. An enhanced optical modulation of 30% is achieved with [PANI/PAA-PEI]30 films at 630 nm compared with the lower optical modulation of 11% measured from [PANI/PAA]30 films. The switching time of [PANI/PAA-PEI]30 films is only half of that of [PANI/PAA]30 films, which indicates a faster redox process. Utilizing polyelectrolyte complexes as building blocks is a promising approach to prepare fast growing LbL films for high performance electrochemical device applications.