Manipulating propagating graphene plasmons at near field by shaped graphene nano-vacancies
Surface plasmons in graphene have many promising properties, such as high confinement, low losses, and gate-tunability. However, it is also the high confinement that makes them difficult to excite due to their large momentum mismatch with free-space mid-infrared light. We propose to use shaped graph...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/104119 http://hdl.handle.net/10220/19513 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Surface plasmons in graphene have many promising properties, such as high confinement, low losses, and gate-tunability. However, it is also the high confinement that makes them difficult to excite due to their large momentum mismatch with free-space mid-infrared light. We propose to use shaped graphene nano-vacancies to compensate for the momentum mismatch, revealing its high flexibility in graphene plasmon (GP) excitation and manipulation. We first examine the electromagnetic standing waves generated with a pair of straight vacancies, in order to verify the excitation of GPs and to illustrate their tunability with gate voltage. Plasmonic lenses are then designed to achieve the super-focusing of mid-infrared light and to generate plasmonic vortices in graphene. A∼0.0125λ0 hotspot is generated, far below the optical diffraction limit, hence revealing the capability of light control at deep-subwavelength scale. |
---|