Synergistic effect of self-assembled carbon nanopaper and multi-layered interface on shape memory nanocomposite for high speed electrical actuation
The synergistic effect of self-assembled carbon nanofiber (CNF) nanopaper and the multi-layered interface on the electrical properties and electro-activated recovery behavior of shape memory polymer (SMP) nanocomposites is investigated. The CNFs were self-assembled by deposition into sheets of multi...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/104868 http://hdl.handle.net/10220/20314 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The synergistic effect of self-assembled carbon nanofiber (CNF) nanopaper and the multi-layered interface on the electrical properties and electro-activated recovery behavior of shape memory polymer (SMP) nanocomposites is investigated. The CNFs were self-assembled by deposition into sheets of multi-layered nanopaper form to significantly enhance the bonding strength between the nanopaper and SMP via van der Waals force. The self-assembled multi-layered CNF nanopaper resulted in improved electrical conductivity and temperature distribution in the SMP nanocomposites. This not only significantly enhances the reliability of bonding between the nanopaper and the SMP, resulting in an improved recovery ratio, but also provides high speed electrical actuation. |
---|