Operation speed of polariton condensate switches gated by excitons
We present a time-resolved photoluminescence (PL) study in real and momentum space of a polariton condensate switch in a quasi-one-dimensional semiconductor microcavity. The polariton flow across the ridge is gated by excitons inducing a barrier potential due to repulsive interactions. A study of th...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/104982 http://hdl.handle.net/10220/20416 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We present a time-resolved photoluminescence (PL) study in real and momentum space of a polariton condensate switch in a quasi-one-dimensional semiconductor microcavity. The polariton flow across the ridge is gated by excitons inducing a barrier potential due to repulsive interactions. A study of the device operation dependence on the power of the pulsed gate beam obtains a satisfactory compromise for the on-off signal ratio and switching time of the order of 0.3 and ∼50 ps, respectively. The opposite transition is governed by the long-lived gate excitons, consequently, the off-on switching time is ∼200 ps, limiting the overall operation speed of the device to ∼3 GHz. The experimental results are compared to numerical simulations based on a generalized Gross-Pitaevskii equation, taking into account incoherent pumping, decay, and energy relaxation within the condensate. |
---|