Unsupervised co-segmentation for 3D shapes using iterative multi-label optimization
This paper presents an unsupervised algorithm for co-segmentation of a set of 3D shapes of the same family. Taking the over-segmentation results as input, our approach clusters the primitive patches to generate an initial guess. Then, it iteratively builds a statistical model to describe each cluste...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/105015 http://hdl.handle.net/10220/16822 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | This paper presents an unsupervised algorithm for co-segmentation of a set of 3D shapes of the same family. Taking the over-segmentation results as input, our approach clusters the primitive patches to generate an initial guess. Then, it iteratively builds a statistical model to describe each cluster of parts from the previous estimation, and employs the multi-label optimization to improve the co-segmentation results. In contrast to the existing “one-shot” algorithms, our method is superior in that it can improve the co-segmentation results automatically. The experimental results on the Princeton Segmentation Benchmark demonstrate that our approach is able to co-segment 3D shapes with significant variability and achieves comparable performance to the existing supervised algorithms and better performance than the unsupervised ones. |
---|