A versatile approach towards multifunctional robust microcapsules with tunable, restorable, and solvent-proof superhydrophobicity for self-healing and self-cleaning coatings
Numerous microencapsulation techniques have been developed to encase various chemicals, for which specific processing parameters are required to address the widely differing features of the encapsulated materials. Microencapsulation of reactive agents is a powerful technique that has been extensivel...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/105131 http://hdl.handle.net/10220/20687 http://dx.doi.org/10.1002/adfm.201401473 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-105131 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1051312019-12-06T21:46:23Z A versatile approach towards multifunctional robust microcapsules with tunable, restorable, and solvent-proof superhydrophobicity for self-healing and self-cleaning coatings Wu, Gang An, Jinliang Tang, Xiu-Zhi Xiang, Yong Yang, Jinglei School of Mechanical and Aerospace Engineering DRNTU::Engineering::Materials::Biomaterials Numerous microencapsulation techniques have been developed to encase various chemicals, for which specific processing parameters are required to address the widely differing features of the encapsulated materials. Microencapsulation of reactive agents is a powerful technique that has been extensively applied to self-healing materials. However, the poor solvent compatibility and insufficient thermal stability of microcapsules continue to pose challenges for long-term storage, processing, and service in practical applications. Here, an easily modifiable and highly versatile method is reported for preparing various chemicals filled poly(urea-formaldehyde) microcapsules that exhibit superior tightness against solvents and heat and that possess widely tunable, repetitiously self-restorable, and solvent-proof superhydrophobicity. In addition, the low-cost fabrication of biomimetic multifunctional smart coatings is demonstrated for self-healing anticorrosion and self-cleaning antifouling applications by directly dispersing the superhydrophobic microcapsules into and onto a polymer matrix. The methodology presented in this study should inspire the development of multifunctional intelligent materials for applications in related fields. 2014-09-15T05:29:31Z 2019-12-06T21:46:23Z 2014-09-15T05:29:31Z 2019-12-06T21:46:23Z 2014 2014 Journal Article Wu, G., An, J., Tang, X.-Z., Xiang, Y., & Yang, J. (2014). A versatile approach towards multifunctional robust microcapsules with tunable, restorable, and solvent-proof superhydrophobicity for self-healing and self-cleaning coatings. Advanced functional materials, 24(43), 6751-6761. 1616-301X https://hdl.handle.net/10356/105131 http://hdl.handle.net/10220/20687 http://dx.doi.org/10.1002/adfm.201401473 en Advanced functional materials © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Materials::Biomaterials |
spellingShingle |
DRNTU::Engineering::Materials::Biomaterials Wu, Gang An, Jinliang Tang, Xiu-Zhi Xiang, Yong Yang, Jinglei A versatile approach towards multifunctional robust microcapsules with tunable, restorable, and solvent-proof superhydrophobicity for self-healing and self-cleaning coatings |
description |
Numerous microencapsulation techniques have been developed to encase various chemicals, for which specific processing parameters are required to address the widely differing features of the encapsulated materials. Microencapsulation of reactive agents is a powerful technique that has been extensively applied to self-healing materials. However, the poor solvent compatibility and insufficient thermal stability of microcapsules continue to pose challenges for long-term storage, processing, and service in practical applications. Here, an easily modifiable and highly versatile method is reported for preparing various chemicals filled poly(urea-formaldehyde) microcapsules that exhibit superior tightness against solvents and heat and that possess widely tunable, repetitiously self-restorable, and solvent-proof superhydrophobicity. In addition, the low-cost fabrication of biomimetic multifunctional smart coatings is demonstrated for self-healing anticorrosion and self-cleaning antifouling applications by directly dispersing the superhydrophobic microcapsules into and onto a polymer matrix. The methodology presented in this study should inspire the development of multifunctional intelligent materials for applications in related fields. |
author2 |
School of Mechanical and Aerospace Engineering |
author_facet |
School of Mechanical and Aerospace Engineering Wu, Gang An, Jinliang Tang, Xiu-Zhi Xiang, Yong Yang, Jinglei |
format |
Article |
author |
Wu, Gang An, Jinliang Tang, Xiu-Zhi Xiang, Yong Yang, Jinglei |
author_sort |
Wu, Gang |
title |
A versatile approach towards multifunctional robust microcapsules with tunable, restorable, and solvent-proof superhydrophobicity for self-healing and self-cleaning coatings |
title_short |
A versatile approach towards multifunctional robust microcapsules with tunable, restorable, and solvent-proof superhydrophobicity for self-healing and self-cleaning coatings |
title_full |
A versatile approach towards multifunctional robust microcapsules with tunable, restorable, and solvent-proof superhydrophobicity for self-healing and self-cleaning coatings |
title_fullStr |
A versatile approach towards multifunctional robust microcapsules with tunable, restorable, and solvent-proof superhydrophobicity for self-healing and self-cleaning coatings |
title_full_unstemmed |
A versatile approach towards multifunctional robust microcapsules with tunable, restorable, and solvent-proof superhydrophobicity for self-healing and self-cleaning coatings |
title_sort |
versatile approach towards multifunctional robust microcapsules with tunable, restorable, and solvent-proof superhydrophobicity for self-healing and self-cleaning coatings |
publishDate |
2014 |
url |
https://hdl.handle.net/10356/105131 http://hdl.handle.net/10220/20687 http://dx.doi.org/10.1002/adfm.201401473 |
_version_ |
1681037296700227584 |