Drug encapsulation and release by mesoporous silica nanoparticles : the effect of surface functional groups

Mesoporous silica nanoparticles (MSNPs) have been widely used as drug carriers for stimuli-responsive drug delivery. Herein, a catalysis screening technique was adopted for analyzing the effects of chain length, terminal group, and density of disulfide-appended functional ligands on the surface of M...

Full description

Saved in:
Bibliographic Details
Main Authors: Tan, Si Yu, Ang, Chung Yen, Li, Peizhou, Yap, Qi Ming, Zhao, Yanli
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2014
Subjects:
Online Access:https://hdl.handle.net/10356/105151
http://hdl.handle.net/10220/20483
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Mesoporous silica nanoparticles (MSNPs) have been widely used as drug carriers for stimuli-responsive drug delivery. Herein, a catalysis screening technique was adopted for analyzing the effects of chain length, terminal group, and density of disulfide-appended functional ligands on the surface of MSNPs on drug-loading capacity and glutathione-triggered drug-release kinetics. The ligand with an intermediate length (5 carbon atoms) and a bulky terminal group (cyclohexyl) that complexes with theβ-cyclodextrin ring showed the highest drug loading capacity as well as good release kinetics. In addition, decreasing the surface coverage of the functional ligands led to an enhancement in drug release. In vitro drug-delivery experiments on a melanoma cell line (B16-F10) by using the functionalized MSNPs further supported the conclusion. The results obtained may serve as a general guide for developing more effective MSNP systems for drug delivery.