Prediction of giant magnetoelectric effect in LaMnO3/BaTiO3/SrMnO3 superlattice: The role of n-type SrMnO3/LaMnO3 interface
We study the magnetoelectric coupling for the [001]-oriented (LaMnO3)2/(BaTiO3)5/(SrMnO3)2 superlattice, by means of the density functional theory. An interesting transition between ferromagnetic ordering and antiferromagnetic ordering is demonstrated by switching ferroelectric polarization in short...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/105271 http://hdl.handle.net/10220/20670 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-105271 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1052712023-02-28T19:22:13Z Prediction of giant magnetoelectric effect in LaMnO3/BaTiO3/SrMnO3 superlattice: The role of n-type SrMnO3/LaMnO3 interface Chen, L. Y. Chen, C. L. Jin, K. X. Wu, T. School of Physical and Mathematical Sciences DRNTU::Science::Physics::Electricity and magnetism We study the magnetoelectric coupling for the [001]-oriented (LaMnO3)2/(BaTiO3)5/(SrMnO3)2 superlattice, by means of the density functional theory. An interesting transition between ferromagnetic ordering and antiferromagnetic ordering is demonstrated by switching ferroelectric polarization in short-period superlattice structure. The predicted ferroelectrically induced magnetic reconstruction is less sensitive to the choice of Coulomb-correction U within GGA + U scheme. A possible explanation is given in terms of the favorable effect of n-type SrMnO3/LaMnO3 interface. Our results suggest that a sizable magnetoelectric effect may be achieved in the short-period LaMnO3/BaTiO3/SrMnO3 superlattice, hence promising application in electrically controlled magnetic data storage. Published version 2014-09-12T08:35:11Z 2019-12-06T21:48:30Z 2014-09-12T08:35:11Z 2019-12-06T21:48:30Z 2014 2014 Journal Article Chen, L. Y., Chen, C. L., Jin, K. X., & Wu, T. (2014). Prediction of giant magnetoelectric effect in LaMnO3/BaTiO3/SrMnO3 superlattice: The role of n-type SrMnO3/LaMnO3 interface. Journal of applied physics, 116(7), 074102. https://hdl.handle.net/10356/105271 http://hdl.handle.net/10220/20670 10.1063/1.4893370 en Journal of applied physics © 2014 AIP Publishing LLC. This paper was published in Journal of Applied Physics and is made available as an electronic reprint (preprint) with permission of AIP Publishing LLC. The paper can be found at the following official DOI: [http://dx.doi.org/10.1063/1.4893370]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science::Physics::Electricity and magnetism |
spellingShingle |
DRNTU::Science::Physics::Electricity and magnetism Chen, L. Y. Chen, C. L. Jin, K. X. Wu, T. Prediction of giant magnetoelectric effect in LaMnO3/BaTiO3/SrMnO3 superlattice: The role of n-type SrMnO3/LaMnO3 interface |
description |
We study the magnetoelectric coupling for the [001]-oriented (LaMnO3)2/(BaTiO3)5/(SrMnO3)2 superlattice, by means of the density functional theory. An interesting transition between ferromagnetic ordering and antiferromagnetic ordering is demonstrated by switching ferroelectric polarization in short-period superlattice structure. The predicted ferroelectrically induced magnetic reconstruction is less sensitive to the choice of Coulomb-correction U within GGA + U scheme. A possible explanation is given in terms of the favorable effect of n-type SrMnO3/LaMnO3 interface. Our results suggest that a sizable magnetoelectric effect may be achieved in the short-period LaMnO3/BaTiO3/SrMnO3 superlattice, hence promising application in electrically controlled magnetic data storage. |
author2 |
School of Physical and Mathematical Sciences |
author_facet |
School of Physical and Mathematical Sciences Chen, L. Y. Chen, C. L. Jin, K. X. Wu, T. |
format |
Article |
author |
Chen, L. Y. Chen, C. L. Jin, K. X. Wu, T. |
author_sort |
Chen, L. Y. |
title |
Prediction of giant magnetoelectric effect in LaMnO3/BaTiO3/SrMnO3 superlattice: The role of n-type SrMnO3/LaMnO3 interface |
title_short |
Prediction of giant magnetoelectric effect in LaMnO3/BaTiO3/SrMnO3 superlattice: The role of n-type SrMnO3/LaMnO3 interface |
title_full |
Prediction of giant magnetoelectric effect in LaMnO3/BaTiO3/SrMnO3 superlattice: The role of n-type SrMnO3/LaMnO3 interface |
title_fullStr |
Prediction of giant magnetoelectric effect in LaMnO3/BaTiO3/SrMnO3 superlattice: The role of n-type SrMnO3/LaMnO3 interface |
title_full_unstemmed |
Prediction of giant magnetoelectric effect in LaMnO3/BaTiO3/SrMnO3 superlattice: The role of n-type SrMnO3/LaMnO3 interface |
title_sort |
prediction of giant magnetoelectric effect in lamno3/batio3/srmno3 superlattice: the role of n-type srmno3/lamno3 interface |
publishDate |
2014 |
url |
https://hdl.handle.net/10356/105271 http://hdl.handle.net/10220/20670 |
_version_ |
1759854542796619776 |