Integrated photonic chip for quantum key distribution
Silicon photonic technologies exploit silicon as an optical material to build a wide array of devices and systems. The flexibility, modularity, and stability of silicon photonic systems provide unprecedented opportunities for next-generation quantum key distribution (QKD) and quantum networking. Thi...
Saved in:
主要作者: | |
---|---|
其他作者: | |
格式: | Theses and Dissertations |
語言: | English |
出版: |
2019
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/105274 http://hdl.handle.net/10220/47830 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
總結: | Silicon photonic technologies exploit silicon as an optical material to build a wide array of devices and systems. The flexibility, modularity, and stability of silicon photonic systems provide unprecedented opportunities for next-generation quantum key distribution (QKD) and quantum networking. This doctoral thesis focuses on the design, simulation, fabrication, and experiment of QKD chips based on silicon photonics. Crucial components for QKD chips are designed and fabricated, including the grating coupler, polarization beam splitter, polarization rotator, modulator, photodetector, ring resonator, and interferometer. Using these components, chip-based continuous variable quantum key distribution (CV-QKD) is demonstrated for the first time. The chip-based CV-QKD system is capable of producing a secret key rate of 9.3 kbits/s (under collective attack) at a distance of 100 km in fiber. The successful demonstration of a single chip-based QKD offers new possibilities for low-cost, scalable and portable quantum networks. |
---|