Flow network-based real-time scheduling for reducing static energy consumption on multiprocessors
The energy management for embedded real-time systems is crucial due to their restricted power supplies. With the advancement of technologies, the static energy consumption of the embedded systems that is caused by their leakage power is growing. Thus, a number of research works have started focusing...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/105454 http://hdl.handle.net/10220/48703 http://dx.doi.org/10.1109/ACCESS.2018.2886562 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-105454 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1054542019-12-06T21:51:37Z Flow network-based real-time scheduling for reducing static energy consumption on multiprocessors Sun, Joohyung Cho, Hyeonjoong Easwaran, Arvind Park, Ju-Derk Choi, Byeong-Cheol School of Computer Science and Engineering DRNTU::Engineering::Computer science and engineering Energy-aware Algorithm Dynamic Power Management The energy management for embedded real-time systems is crucial due to their restricted power supplies. With the advancement of technologies, the static energy consumption of the embedded systems that is caused by their leakage power is growing. Thus, a number of research works have started focusing on reducing the static energy consumption by making the systems transit into low-power states, wherein some hardware components are temporarily shut down. Specifically, when a processor is idling, they attempt to set the processor into one of several low-power states. To make a processor remain in the low-power state as long as possible to minimize the energy consumption, the idle time should be maximally clustered. At the same time, in order to satisfy the real-time constraints of the tasks, the length of the clustered idle time should be estimated accurately. To achieve our objective, we propose energy-efficient real-time scheduling algorithms on symmetric homogeneous multiprocessors with a dynamic power management scheme for periodic real-time tasks. The proposed algorithms rely on a flow network model that effectively helps to cluster the idle time while respecting the real-time constraints. In our experimental evaluation, the proposed algorithms consume a comparable static energy to an existing off-line scheme that is the only suitable existing algorithm in the problem domain. Furthermore, we show that the proposed algorithms consume less static energy than the existing one in a case where the total workload of the given task set is low and the task completion is earlier than expected. MOE (Min. of Education, S’pore) Published version 2019-06-13T02:51:40Z 2019-12-06T21:51:37Z 2019-06-13T02:51:40Z 2019-12-06T21:51:37Z 2018 Journal Article Sun, J., Cho, H., Easwaran, A., Park, J.-D., & Choi, B.-C. (2019). Flow network-based real-time scheduling for reducing static energy consumption on multiprocessors. IEEE Access, 7, 1330-1344. doi:10.1109/ACCESS.2018.2886562 https://hdl.handle.net/10356/105454 http://hdl.handle.net/10220/48703 http://dx.doi.org/10.1109/ACCESS.2018.2886562 en IEEE Access © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. 15 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Computer science and engineering Energy-aware Algorithm Dynamic Power Management |
spellingShingle |
DRNTU::Engineering::Computer science and engineering Energy-aware Algorithm Dynamic Power Management Sun, Joohyung Cho, Hyeonjoong Easwaran, Arvind Park, Ju-Derk Choi, Byeong-Cheol Flow network-based real-time scheduling for reducing static energy consumption on multiprocessors |
description |
The energy management for embedded real-time systems is crucial due to their restricted power supplies. With the advancement of technologies, the static energy consumption of the embedded systems that is caused by their leakage power is growing. Thus, a number of research works have started focusing on reducing the static energy consumption by making the systems transit into low-power states, wherein some hardware components are temporarily shut down. Specifically, when a processor is idling, they attempt to set the processor into one of several low-power states. To make a processor remain in the low-power state as long as possible to minimize the energy consumption, the idle time should be maximally clustered. At the same time, in order to satisfy the real-time constraints of the tasks, the length of the clustered idle time should be estimated accurately. To achieve our objective, we propose energy-efficient real-time scheduling algorithms on symmetric homogeneous multiprocessors with a dynamic power management scheme for periodic real-time tasks. The proposed algorithms rely on a flow network model that effectively helps to cluster the idle time while respecting the real-time constraints. In our experimental evaluation, the proposed algorithms consume a comparable static energy to an existing off-line scheme that is the only suitable existing algorithm in the problem domain. Furthermore, we show that the proposed algorithms consume less static energy than the existing one in a case where the total workload of the given task set is low and the task completion is earlier than expected. |
author2 |
School of Computer Science and Engineering |
author_facet |
School of Computer Science and Engineering Sun, Joohyung Cho, Hyeonjoong Easwaran, Arvind Park, Ju-Derk Choi, Byeong-Cheol |
format |
Article |
author |
Sun, Joohyung Cho, Hyeonjoong Easwaran, Arvind Park, Ju-Derk Choi, Byeong-Cheol |
author_sort |
Sun, Joohyung |
title |
Flow network-based real-time scheduling for reducing static energy consumption on multiprocessors |
title_short |
Flow network-based real-time scheduling for reducing static energy consumption on multiprocessors |
title_full |
Flow network-based real-time scheduling for reducing static energy consumption on multiprocessors |
title_fullStr |
Flow network-based real-time scheduling for reducing static energy consumption on multiprocessors |
title_full_unstemmed |
Flow network-based real-time scheduling for reducing static energy consumption on multiprocessors |
title_sort |
flow network-based real-time scheduling for reducing static energy consumption on multiprocessors |
publishDate |
2019 |
url |
https://hdl.handle.net/10356/105454 http://hdl.handle.net/10220/48703 http://dx.doi.org/10.1109/ACCESS.2018.2886562 |
_version_ |
1681041873234296832 |