Bending, splitting, compressing and expanding of electromagnetic waves in infinitely anisotropic media

High-efficiency diffraction-free manipulations of electromagnetic (EM) waves are fundamentally difficult to realize, though reflectionless wave bending or sub-diffraction-limited imaging has been realized separately in previous demonstrations. Recent advances in epsilon-near-zero and anisotropic eps...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhang, Youming, Zhang, Baile
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2019
Subjects:
Online Access:https://hdl.handle.net/10356/105513
http://hdl.handle.net/10220/47880
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:High-efficiency diffraction-free manipulations of electromagnetic (EM) waves are fundamentally difficult to realize, though reflectionless wave bending or sub-diffraction-limited imaging has been realized separately in previous demonstrations. Recent advances in epsilon-near-zero and anisotropic epsilon-near-infinity metamaterials have provided unique possibilities to achieve reflectionless diffraction-free EM wave manipulations. Here, we propose bending, splitting, compressing and expanding of EM waves with infinitely anisotropic media that can be achieved without diffraction or reflection. The results are verified by numerical simulations. This work furthers the study of infinitely anisotropic media, and might find applications in high-efficiency interconnection of subwavelength photonic information.