Variable elasticity spring-relaxation: improving the accuracy of localization for WSNs with unknown path loss exponent

Wireless sensor network is a key enabling technology for Ambient Intelligence, where location information is crucial for many applications. RSS-based ranging localization takes advantage of its low cost and low complexity, but it has an infeasible assumption of an accurate path loss exponent of the...

全面介紹

Saved in:
書目詳細資料
Main Authors: Zhang, Qing, Foh, Chuan Heng, Seet, Boon-Chong, Fong, A. C. M.
其他作者: School of Computer Engineering
格式: Article
語言:English
出版: 2013
主題:
在線閱讀:https://hdl.handle.net/10356/105643
http://hdl.handle.net/10220/17924
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Wireless sensor network is a key enabling technology for Ambient Intelligence, where location information is crucial for many applications. RSS-based ranging localization takes advantage of its low cost and low complexity, but it has an infeasible assumption of an accurate path loss exponent of the physical environment. In this paper, we study the impact of path loss exponent accuracy on the localization accuracy. We formulate the relationship between the path loss exponent estimate and localization error, and found the localization error of exponential order which we call the error magnification effect. By our in-depth investigation, we propose a passive and an active measures to suppress the error magnification effect, where the passive measure stabilizes the localization error of the spring-relaxation algorithm (SR), and the active measure introduces variable elasticity into the SR algorithm to cancel off the exponential ranging error. The combination of both measures forms our localization solution called variable elasticity spring-relaxation (VE-SR) localization. We conduct extensive simulation experiments to show the effectiveness of VE-SR in suppressing the error magnification effect in various experiment setup. For a wide variety of physical environments, VE-SR offers location estimation with an average accuracy of no more than 10% of transmission range.