Orthogonal vs. uncorrelated least squares discriminant analysis for feature extraction
In this paper, a new discriminant analysis for feature extraction is derived from the perspective of least squares regression. To obtain great discriminative power between classes, all the data points in each class are expected to be regressed to a single vector, and the basic task is to find a tran...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/105687 http://hdl.handle.net/10220/17576 http://dx.doi.org/10.1016/j.patrec.2011.11.028 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |